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Abstract. To increase the representation of physical presessinundation modelling, current research apgrea aim to
integrate both hydrological and hydrodynamic moda&lprevious study by Hoch et al. (2017) showed gmatially explicit
coupling approaches can outperform stand-alone byrsngle-purpose models as they combine spaititidtyibuted model
forcing by hydrological models with more sophisteza routing schemes in hydrodynamic models. We lpeesent
GLOFRIM, a globally applicable computational franmW for integrated hydrological-hydrodynamic modsdl to
facilitate such coupling approaches and to cateafioensemble of models to be coupled. It currealtbws for coupling the
global hydrological model PCR-GLOBWB with either IB8D Flexible Mesh (DFM), solving the full shallewater
equations and allowing for spatially flexible meshi or LISFLOOD-FP (LFP), solving the local inergguations and
running on regular grids. The main advantages efftamework are its open and free access, its gpglicability, its
versatility, and its extensibility with other hydiegical or hydrodynamic models. Before applying GIRIM to an actual
test case, we benchmarked both DFM and LFP fomthstyic test case. Results show that for sub-atifiow conditions,
discharge response to the same input signal is ideatical for both models, which agrees with poes studies. We
subsequently applied the framework to the AmazamiRbasin to test the framework thoroughly andyddition, to perform
a first-ever benchmark of flexible and regular grt the large-scale. Both DFM and LFP produce eoaige results in
terms of simulated discharge with LFP exhibitinigisily higher accuracy as expressed by a Kling-Gfficiency of 0.82
compared to 0.76 for DFM. However, benchmarkinghaation extent between DFM and LFP over the estudy area, a
critical success index of 0.46 was obtained, irtthgathat the models disagree as often as theyea@néferences between
models in both simulated discharge and inundatixterg is to a large extent attributable to the djnd techniques
employed. In fact, the result show that the nuna¢rgcheme of the inundation model and the griddechnique can
contribute as strongly to deviations in simulatednidation extent as, unlike the global flood modétr-comparison by
Trigg et al. (2016), we control for model forcingida boundary conditions. This study shows that thesented
computational framework is robust and widely apdlie. GLOFRIM is designed as open access and teasdy
extendable, and thus we hope that other large-doadeological and hydrodynamic models will be addeudentually
capturing more locally relevant processes as wehlbwing for more robust model inter-comparisbanchmarking, and

ensemble simulations of flood hazard at the laogdes
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1 Introduction

In the latter half of the last century, losses tueiverine floods increased greatly, leading toreamic losses of more than
$1 billion and 220,000 casualties since 1980 (MuriRe, 2013; Visser et al., 2012). Much of this @age is thought to be
due to continued settlement along rivers and sliiftslimate patterns, meaning that this tendencly most likely be
exacerbated in the future (Ceola et al., 2014;bdiyashi et al., 2013; Winsemius et al., 2016). 8aoondation estimates
are therefore paramount to enhance our procesgsiadding and to provide better flood hazard egéséor risk models.
Since recent research showed that flood inundatam easily affect large areas, in particular nedgiimg river basins
(Jongman et al., 2014), it is vital that flood hazeodels can simulate the relevant processeslarge domains. Applying
such large-scale models has the additional advardafacilitating the identification of risk hotsgoand providing critical
insight into data-scarce areas (Ward et al., 20tbfact, there are already a number of globaleséalindation models
available (Dottori et al., 2016; Pappenberger gt20112; Sampson et al., 2015; Winsemius et all32(amazaki et al.,
2011), differing in their process descriptions aodnputational engine. While some approaches déioeel hazard from a
coarse-scale hydrological model and subsequent sitaling, others force fine-scale hydrodynamic medeith globally
regionalized discharge data. A first inter-compami®f global flood hazard models by Trigg et aDX8) for the African
continent, however, revealed that they agree fdy @©%-40% of aggregated flood extent, thus indmzatthat the
representativeness of local flood risk estimateg depend strongly on the computational engine oftieds well as on the
model forcing applied. Identifying the exact reasfor model disagreement was impossible due taitrersity of methods
and lack of a systematic approach to the inter-aimpn where individual aspects of the modellirenfeworks could be
isolated.

Employing a global hydrological model (GHM) such RER-GLOBWB (van Beek et al., 2011; van Beek aneri&ns,
2008), WaterGAP (Alcamo et al., 1997; Ddll et 2003) or VIC (Liang et al., 1994; Wood et al., 1992s the benefit of
providing spatially distributed surface runoff amduted discharge simulations, thereby facilitatidigect forcing for
spatially distributed inundation models. In additidhese models are usually forced by global metegical data, hence
diminishing the dependency on observed data as agelllowing for easier implementation of futur@ngte scenarios.
However, the routing schemes currently implemerntedarge-scale hydrological models can generallydescribed as
simplistic as they are based on gridded drainageanks at coarse spatial resolution, with the autityefinest spatial
resolution of GHMs being 5 arcmin or around 10 kMG« km at the Equator (Bierkens, 2015). Furthermdischarge
accuracy may be reduced in low-gradient catchm&nte topography at this scale is generally paramnzetd in distribution
functions and river routing is often representedilsymple scheme, such as the kinematic wave ajpativn.
Hydrodynamic models, on the other hand, can be luilumerous ways for inundation modelling, typligan 1-D, 2-D or
combined 1-D/2-D, and are mostly forced with gaudesgharge data or synthesized flood waves. Whith spproaches do
not require rainfall-runoff conversion, they arelplematic for studies concerning large-scale clin@tange impacts or the
seamless simulation of flood events and their apabtrrelation (Jongman et al., 2014). Some motilets CaMa-Flood
(Yamazaki et al., 2011) route a priori computedrbjaby-based surface runoff with 1-D hydrodynamacs! parameterized
2-D floodplain storage. Applying such a 1-D/2-D eggrch, however, does not allow for explicit modwliof floodplain
flow pathways as well as channel-floodplain intéiats. Explicitly representing these processes Wil beneficial as they
are known to greatly influence inundation dynamaecsl patterns (Trigg et al., 2009). Compared to digdsical models,
hydrodynamic models solving the full SWE or at temsnore advanced approximation such as the loeatia equations
(LIE) have the advantage of providing a better espntation of backwater effects, which are imparflod-triggering

processes (Meade et al., 1991; Moussa and Bocoquile96; Paiva et al., 2013). Another differenc&téMs is that current

2
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applications of hydrodynamic models at the larggltial scale can run at spatial resolutions ofcup km (Sampson et al.,
2015), greatly facilitating the representation otfbrelevant channel-floodplain interactions (Ruflet al., 2014a, 2014b)
and flow pathways on floodplains (Rudorff et aD12a; Tayefi et al., 2007) as well as enhancingugability for decision-
making processes (Beven et al., 2015; Trigg e2éll6).Notwithstanding these advantages, hydrodynamic iteddek an
advanced implementation of hydrological processes taus may overpredict both inundation extent degth as, for
instance, groundwater infiltration and evaporafimm inundated floodplains are currently not fullycounted for.

Large scale flood hazard estimates may thus befrefib increased integration of hydrology and hydmamics in
inundation models to allow for physically more igtated assessments and to compensate for the@ctegpshortcomings.
In fact, hydrological-hydrodynamic coupling waseady applied in a number of studies (Biancamaria.e?009; Lian et
al., 2007; Schumann et al., 2013), but none ofettetadies coupled hydrology and hydrodynamics apatially explicit
manner, that is on a grid-by-grid basis. Instebdy ttmployed output from hydrological or land-soefanodels as input to
the 1-D/2-D hydrodynamic model LISFLOOD-FP at a memof locations (Bates et al., 2010; Bates andRde, 2000).
While such approaches reduce the dependency oredalaga or synthesized flood waves, they canntyt &dcount for
important and spatially distributed hydrologicadt-triggering processes within the model domainmis would, however,
be advantageous to support the assessment ofl sgatielations of flood waves in adjacent riveribaswhich are shown to
increase trans-national flood risk (Jongman et2014). A further valuable contribution for prommdi the coupling of
models from different disciplines was realized hg Community Surface Dynamics Modelling Systemaugr({CSDMS)
with their development of the Web Modelling Tool iW; CSDMS (2017)). This tool enables the user ®ate a coupled
model from a list of readily available models amuh it on a server of CSDMS. Whilst this is an intpat step towards
integrated modelling between disciplines, applitgbis hampered by the fact that model code isomenly accessible and
that the number of available models is limited predefined.

Recently, Hoch et al. (2017) coupled PCR-GLOBWBr¢aéer PCR) with the hydrodynamic model Delft3@ble Mesh
(hereafter DFM; Kernkamp et al. (2011)) for the Amoa River basin to integrate the hydrological ardirbdynamic
processes occurring over the entire study areaulRemdicate that spatially explicit coupling ofydrological and
hydrodynamic models can improve the representationundation for all river reaches, not only thakat are connected to
upstream boundary conditions. Findings also comateothat spatially distributed forcing retrievedri a hydrological
model in combination with a sophisticated rivertiog scheme outperforms results obtained with motilels run in stand-
alone mode.

Even though these results are promising, it hasetacknowledged that the accuracy of a hydrological hydrodynamic
model can vary strongly, depending on the chossilysirea, model parameterization, model structurmerical scheme or
the use of different input data (Li et al., 2015igg et al., 2016). It would hence be advantageousase the choice of the
coupled models on their local performance, potdéntiautperforming predefined set-ups, or simply ¢tme model
schematization at hand.

To facilitate such model selection and to furthespote the coupling of large-scale hydrological &gdrodynamic models,
we developed GLOFRIM, a GLObally applicable compioteal FRamework for Integrated hydrological-hydyndmic
Modelling. In addition to the work of Hoch et aRQ17), it includes the widely used hydrodynamic BlddSFLOOD-FP
(hereafter LFP; Bates and de Roo (2000)) and amowepl as well as extended coupling algorithm, tteigring a wider
range of model schematizations and applicationsvébelieve that by combining the locally best-parfing hydrological

and hydrodynamic models can better capture allvagle processes, GLOFRIM is designed in an expaedalay to
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eventually incorporate more models. Furthermore,ftamework is openly available under GNU 3.0 lsgbtio stimulate
collaboration and idea exchange within the sciEnttommunity. Key assets of the framework are resefand open
accessibility, its global applicability, its versiéyg, and its potential to be further developed d&ofull two-dimensional
coupling scheme between hydrology and hydrodynamibi&ch would play a particularly crucial role im&ins in semi-arid
climates as for instance the Niger (Dadson e28fL0; Mahe et al., 2009).

In the remainder of the paper, we first descriteerttodel components of the framework and theretfeeframework and its
functionalities in detail. Subsequently, we compiduetwo hydrodynamic models in a simple synthtst case to obtain a
first understanding of possible differences, intipatar in terms of their numerical schemes. As nsefor benchmarking,
we assess simulated discharge along the flow petheell as run times for a 1-D and 2-D set-up imtdiglly. We then apply
GLOFRIM to one-directionally couple PCR with bottFB and LFP and benchmark the set-ups for an at¢stitase in the
Amazon River basin, hence also constituting a @icshparison of flexible and regular grids for lagale applications. For
model benchmarking, we assess simulated dischasger levels, run times, and inundation extentrg§wds correlation r,
the root mean square error RMSE, and the Kling-&ificiency KGE (Gupta et al., 2009) are deterrditiy comparison
to observed discharge data from the Global RunataCentre (GRDC) at Obidos. We opt for GRDC dattha presented
approach is merely based on input data sets wihafjlcoverage. Simulated water levels are compatezh upstream,
midstream, and downstream station to assess aparhehter level dynamics are correctly represeatetb) to what extent
DFM and LFP differ or agree in their water levehgmutations. Computational efficiency is assesseddmparing the run
times of the coupled set-ups. To benchmark inundatiktent from DFM with LFP, we determine the hiter H, false alarm
ratio F, and the critical success index C basethondation maps of both models at the end of thrikition. No validation
of simulated inundation extent was performed ashHetcal. (2017) already showed good agreementsofteeobtained with
DFM for the same study domain.

This openly available computational framework malesluable contribution to current inundation nitidg at the large
scale by enhancing the integration of hydrologiaati hydrodynamic model processes, which eventually lead to

improved decision making as well as planning ofpdida and mitigation measures.

2 Models

Currently, GLOFRIM includes the hydrological modeCR-GLOBWB as well as the hydrodynamic models BE&lft
Flexible Mesh and LISFLOOD-FP. Hereafter, an ovemwbf the main features of the models is provided. further details
regarding model development and model set-up, fee te the specific manuals or websites.

2.1 PCR-GLOBWB

To generate hydrological input, the global hydratay model PCR-GLOBWB (PCR) is currently incorp@etin the
framework. It can be applied at 30 arcmin resohufi@pproximately 55 km x 55 km at the Equator) & @&s at 5 arcmin
resolution (approximately 10 km x 10 km at the Bqua which may increase accuracy but also runtifeR is entirely
coded in PCRaster Python (Karssenberg et al., 2amh@) distinguishes between two vertically stackeil layers, an
underlying groundwater layer, and a surface cadapgr. Water can be exchanged vertically, and exsasgface water can
be routed horizontally along a local drainage dicec(LDD) network employing the kinematic wave ampgmation. The

model is forced with Climate Research Unit (CRUggipitation and temperature data (Harris et all420and evaporation

! The code and user manual of GLOFRIM is downloaslabdoi.org/10.5281/zenodo.597107
4
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is computed using the Penman-Monteith equationa Bats are downscaled to daily fields for the pkfiom 1957 to 2010
using ERA40/ERAI (Kallberg et al., 2005; Uppalaaét 2005). Besides, PCR is able to account foredsim and industrial
water consumption by accounting for water demartd (@AO, 2017). For more information on PCR, wesrdb van Beek
and Bierkens (2008) and van Beek et al. (2011). R@R already applied for a wide range of studiehsas flood and

5 drought forecasting (Yossef et al., 2012), humapaiat on droughts (Wanders and Wada, 2015), globsmstress (van
Beek et al., 2011), and global groundwater simoiteti(de Graaf et al., 2015). More relevant to ¢tigly, PCR constitutes
the computational backbone of the “GLObal FloodkRisth IMAGE Scenarios” framework (GLOFRIS; Winsausiet al.,
(2013)) which is also used as basis for the Aqueélobal Flood Analyzer of the World Resources itngt (World
Resources Institute, 2017).

10 2.2 Delft3D Flexible Mesh

Delft3D Flexible Mesh (DFM) allows the user to sofaize the model domain with a flexible mesh in /2-D/3-D, and
therefore supports the computationally efficiertiesnatization of topographically challenging areashsas river bends or
irregular slopes. The model solves the full Saiet&nt equations, or shallow-water equations (SWEg main partial
differential equations solved by DFM are

oh _
15 Emmhu)-o (1)
ou 1 1 T 1r
E‘FE(D mhuu)—uD[@hu)):—gDZ +ED[@Vh(DU+DU ))+F; (2)
With
(a o)
D_[&’a_yJ ©

20 (being the water leveh the water depthy is the velocity vectorg the gravitational accelerationthe viscosityp the water
mass density, andthe bottom friction. For 1-D flow, the equatioremain the same except that the viscosiyoes not
contain horizontal eddy viscosity. For further teicial details and derivation, we refer to the TéchhManual (Deltares,
2017a). DFM is an openly accessible model and car Iobtained by contacting Deltares
(https://lwww.deltares.nl/en/software/delft3d-flelebmesh-suite/). Besides riverine flood hazard riodg it also caters a

25 wider range of applications, for instance groundwdiow, sediment transport, and water quality datians in 1-D, 2-D,
and 3-D. For more information regarding the appiccaof DFM, we refer to the User Manual (Deltar2®17b). Due to its
very recent publication, only a limited number obfished studies using DFM are available. It was,ifistance, applied in
a global-scale reanalysis for extreme sea levelsgMt al., 2016). In another study, Castro Ganal. €2013) applied DFM
to model flood hazard at the Yellow River, and daded that applying a flexible mesh reduces contrtaime by a

30 factor 10 compared to square grids with equal guafimodel output.

2.3 LISFLOOD-FP

LISFLOOD-FP (LFP) is a widely used, raster-basediehdo compute floodplain inundation. Since itsffiversion (Bates
and de Roo, 2000), it has regularly been adaptddraproved (Bates et al., 2010), for instance bgliagl a sub-gridding

scheme to account for channel flow within cellsNet al., 2012b).
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It is possible to run LFP with different set-up2-® only, a 1-D, a 1-D/2-D or a sub-grid modelttwihe latter being the
most accurate for large-scale inundation modellipgroaches as it greatly increases floodplain adiviky (Neal et al.,
2012b).

When using the sub-grid scheme, LFP solves theesulesit equation for channel flow that is based simgplification of
the SWE ignoring advection (Bates et al., 2010; IN®aal., 2012b). Herey denotes the flow per unit widthg the

gravitational acceleratiod,the water levelR the hydraulic radius) Manning’s surface roughness, ED the gradients in x-
and y-direction as described in Eqg. 3:

%, nghy + 979 = (4)

ot R**h
Mass conservation is implemented as

O(h+q)=0 (5)

WherebyAt denotes the time stepx the cell size andj the cell indices. For further information about rabdevelopment,
derivation of numerical solutions, assumptions, aadlations, we refer to the above-mentioned paper
LFP is specifically developed to model floodplamumndation and has been used in a wide range aestudost notable in
the context of large-scale flood hazard modellmghe work by Sampson et al. (2015) who applied td-Bompute global
estimates of flood hazard and risk as well as byu8@nn et al. (2013) and Biancamaria et al. (20@%) used LFP to
simulate inundation in the Zambezi River and ObeRivespectively, forced with lateral input frontaad surface model.
The BMI adapter (see subsequent section) was imgyieed for LFP version 5.9 which provides all relgvéeatures, in
particular the sub-gridding scheme, to model lasggle inundation.

2.4 Basic Model Interface

Generally, the BMI has several functions that carcélled from external applications like, as irstbase, a Python script.
To make these functions available for a model, al BNapter needs to be developed for each model ne&hect to the
specific internal model structure and programmiagguage. Whilst PCR is already written in Pythom as BMI
implementation is hence straightforward, DFM offareative C-compliant BMI-implementation. For LRfhich is written
in C++, the code and file structure had to be #jghdapted to agree with the requirements for Bi\. Once a BMI
adapter is developed, it is possible to executet afsfunctions: first, the user can initialize thdels by using the BMI
adapter. Second, the BMI adapter allows for reing\a number of variables from memory. This numisguosed through
the BMI adapter can be defined during the develogroéthe BMI adapter and is thus not limited tpra-set range. Third,
the manipulated variables can be set back to figgnal model or can be used to overwrite variallesne or multiple other
models, given that they agree to the internal datacture of those models. Fourth, models connetctedBMI adapter can
be updated at a user-specified time step, henddieganline-coupling of models. In this way itpsssible to get, change,
and set variables during the execution of the noifeluse on a time step basis. Last, models cdinakized to end the
computations. It is noteworthy that implementing tBMI functions does not alter any functionality mutines in the
models. Both DFM and LFP, although not being coeBython, can be called from within Python usihg BMI-python
package (see https://github.com/openearth/bmi-pytHeor further information regarding the BMI, wefer to Peckham et
al. (2013) and the related website (CSDMS, 2016).
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3 The computational framework GLOFRIM

The computational framework presented here consiktsvo key elements, a) the actual code and bpttings-file.
Hereafter, a brief overview is given of their m@iroperties. More detailed information and outlisgprovided in the files
themselves.

The computational backbone of GLOFRIM is entirelyitien in Python 2.7 and was developed and testedJibuntu
systems. By means of a python-file (“couplingFrarogwvl.py” in the downloadable data), the stepsnfmdel coupling
are executed (see Figure 1 for a flow chart). Tlelets are first initialized, that is, the model figaration files of each
model are read and the internal steps requiredbtairo an initial state of the models are promptgdhe BMI adapter.
Thereafter, the BMI adapter is used to retrieve raljuired model variables, especially geometry rméttion. This
information is subsequently used to construct thesgof the models and to spatially couple thermobgrlay and grid-to-
grid assignment. A many-to-one assignment basester indices is performed and the routing contpmrta in PCR are
turned off for all cells signalled as coupled. &se no 1-D or 2-D hydrodynamic cells are locatetiiwia PCR cell, this cell
is therefore not considered to be coupled anddhtng scheme as implemented in PCR prevails. Eoittiormation about
the spatial coupling can be found in Hoch et &01(@. Once the models are spatially coupled, tlaatgloop commences.
During execution of this loop, PCR will be updatdceach time step — typically one day —, and serfaooff and discharge
output will be retrieved as well as externally agapto agree with the data structure of the chdselmodynamic model.
Subsequently, either the water depth or a fluxade in the hydrodynamic model will be overwritteand finally the
hydrodynamic model will be updated until it reacliee same simulation time as PCR. The loop is éxitece a user-
specified number of time steps is reached. It shdd noted that in the current version of the fraoré, only one-
directional coupling from hydrology to hydrodynamnits supported, possibly leading to local overgrigai of simulated
discharge as there is, for instance, no re-infiiraof water going overbank. Future research thills focus on extending
this to a full two-directional coupling scheme witbedback loops from hydrodynamics to hydrologyctsiwo-way
coupling would, for instance, contain explicit méuhg of hydrological processes over inundated aii@ahe hydrodynamic
model.

To specify all relevant information about the canglrun to be performed, a configuration file ieded (“default.ini” in the
downloadable data). Besides all critical paths tmleh data, other model settings can be definetarconfiguration file, for
example the number of model time steps. In gensedings defined in the ini-file overrule thoseeified for the individual
models. In the current version of GLOFRIM, thrediaps need to be specified to realize model cogplby activating the
so-called “River-Floodplain-Scheme”, by specifyitng variables to be updated, and by choosing fdrddynamic models
in either spherical or projected coordinate systems

The so-called “River-Floodplain-Scheme” (RFS) defirvhere output from PCR is coupled to. If RFScisvated, water
volume is directly coupled to the 1-D channelsha hydrodynamic model while, when RFS is inactivater is distributed
over all grid cells of the 2-D domain. Applying tlFS has two major advantages: first, it reducestimes as data
exchange and computations need to be performedafemaller number of cells; second, using RFS igelacale
applications with sufficient channel informatiorduees the dependency on the accuracy of the 2:atede data which is
known to contain strong vertical bias, in particukden derived from remotely sensed global datsseth as Shuttle Rader
Topographic Mission (SRTM) data. In particular slation of flow over vertically irregular terraingelting in super-critical
regimes is contra-indicated for LFP because ofiss of the LIE. In case overland flow needs to loeletied by LFP, we
advise to take measures accordingly, for instaryckntiting flow velocities. For DFM we found thatins are more stable,

yet slower, when deactivating the RFS.
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Second, it is possible to force the hydrodynamidet® by updating the water depth variableriror by updating fluxes,
which are expressed as discharge in LFR?is and as precipitation imm/d in DFM. For DFM, added daily water depth is
divided over a number of user-specified time stépsice reducing the computational load, while fluaee daily constants.
We found that updating fluxes reduces run timespamed to states, and hence advise opting for feragption. While it is
also possible to perform state-updating in LFP . fevend that this option has to be used carefullyt @asily increases run
times. This is because it is currently not possiblepdate LFP at a user-specified time step dubedCourant-Friedrichs-
Lewy condition. It may hence happen that gradibetisveen added daily water depths are too steemgasing the risk of
model instability. We therefore recommend applyfing-updating in LFP instead.

Third, it is possible to use the hydrodynamic medeikh Cartesian coordinates, although PCR rurspherical coordinates.
By providing the projected coordinate system thelehds based on, the computational framework camnstate the grid into
spherical coordinates and perform the grid ovedag cell assignment, thus guaranteeing the apjiigabf all already
existing hydrodynamic schematizations. All othempaitations remain unaffected by the coordinateesysn use as the
coordinate information is solely required for spHyi coupling the grids.

As expressed before, GLOFRIM employs the BMI's fiomwalities to couple hydrological to hydrodynamimcesses. Even
though the current version of GLOFRIM only suppaootge-directional coupling, basing it upon the BMelgls strong
advantages for future two-directional coupling asipled models do not get unnecessarily entangledntially, only
certain arrays of, for example, inundation depthamied in the hydrodynamic model needs to be linkéth actual
evaporation rates as well as groundwater infitratiSuch two-directional coupling is currently nggt available for
GLOFRIM due to on-going testing as well as concepvelopment and will be provided in a future vemsiof the
framework.

Besides being openly accessible and thus adapasbieell as extendable to the user’s preferencésdoridual modelling
requirements, GLOFRIM contains a number of addétiadvantages: first, by having PCR-GLOBWB, or atiyer GHM,
as the hydrological output creator, the framewosk @asily be applied anywhere on the globe givédrydrodynamic
schematization; second, models to be coupled magleeted depending on their local performances fussibly capturing
more relevant processes; third, the spatially eikptioupling scheme can be extended to a full faekiloop between
hydrology and hydrodynamic, also incorporating imaot groundwater infiltration and evaporation msses; fourth, by
guaranteeing identical hydrological forcing, apptyi the computational framework facilitates benchdamay of
hydrodynamic models by eliminating a sources ofedéince, potentially supporting hydrodynamic endenthodelling

approaches.

4 The Synthetic Test Cases
4.1 Set-up

To gain insight in possible differences in modehdgour between LFP and DFM, we created two syithest cases, one
being set-up as 1-D only and the other as 2-D daly.the latter, both models were schematized sbh@hthey cover a
domain of 11 cells by 500 cells, with the cell Hesion being 1 km. For the 1-D only design, therahel had a length of 500
cells with a 1 km resolution, a uniform channel thidf 500 m, and a uniform channel depth of 3 mdAfault settings, we
applied Manning’s surface roughness coefficient®.6# s i’ for the 1-D run and 0.07 s for the 2-D run. Both

synthetic test cases were forced with an artifisf@dtream discharge boundary spanning one yeac@rgisting of two peak

flow moments to introduce variability in model dynias. As a downstream boundary condition a constater level of 0

8
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m was set. The entire simulation period was thesrg/to ensure that all water has drained befaetid of the run. To

assess model output, seven cross-sections weredgefience capturing the downstream propagatigheoértificial flood

waves and facilitating the assessment of possitd@wzation and dampening effects. For benchmartkiegnodels we then

compared discharge along the cross-sections asas/elin times to obtain a first indication how tlierent computational
5 schemes might vary (Figure 2).

4.2 Results and Discussion

Assessing the results for both 2-D and 1-D, we fhat both models simulate the same responsee tmplut signal applied
(Figure 3). Due to the higher friction coefficieamd the wider flow area, it takes the 2-D scheratith almost the entire
simulation period to entirely convey the water vois to the downstream boundary. In the 1-D scheatath, however, all

10 water is already drained after around 30 per cénhe entire simulation period. The similarity afmsilated discharge
between LFP and DFM is, despite the models’ diffees in complexity and design, in line with thedfigs made by Neal
et al. (2012a) and De Almeida and Bates (2013)thén latter study, differences in governing equatiovere assessed
analytically for various flow regimes ranging frauab- to supercritical flow. It was concluded that &pplications with low
Froude numbersHf << 0.5), such as the synthetic test case used hersignificant differences occur between models

15 solving the LIEs and those solving the full dynasniof the SWEs. Also Neal et al. (2012a) showed thappears
unnecessary to employ models solving the SWEsIfov §radually varying in time and for subcriticdbd regimes. In
addition, the study showed that for those applicetj run times of local inertia models are shotit@n those of models
solving the full SWEs. The run times measured Ilfi@r various synthetic test cases used here undgnigifinding as LFP
exhibits shorter run times, in particular for th®Zchematization (

20 Table 1). To facilitate comparability, we a priget the maximum solver time step in DFM to the agerof the time steps
required by LFP. It is noteworthy that the diffeces in run times may not merely be attributablevaoying solver
complexity, but partially also to the programmimgduage and compiler used as well as to generatlncodnplexity and
level of code optimization applied.

5 Test case: the Amazon River basin
25 5.1 Set-up

To test GLOFRIM in an actual test case as welbaseinchmark the flexible and regular grid, the feamrk was applied in
the Amazon River basin with DFM and LFP being schiémd as a flexible mesh and regular grid, respsgt The
methods applied to derive the hydrodynamic schemai@din of the Amazon River basin for DFM are expdal in detail in
Hoch et al. (2017). First, a regular 2-D grid atkh® x 10 km resolution refined until a grid size2km x 2 km was locally
30 obtained, based on the Height Above Nearest Drairmdgorithm (HAND; Rennoé et al. (2008)). Therebgas with low
HAND values were stronger refined than those witihér values, resulting in a finer mesh along aext o river channels.
This implies a major difference to the synthetist tease above, as we now employ a flexible meshadsof a regular grid
for DFM. As input elevation, canopy-free elevatidata at 15 arcsec spatial resolution was applieigB et al., 2013;
O’Loughlin et al., 2016) and subsequently smootteedliminate local depressions and other residwestd vertical errors
35 of SRTM data (Yamazaki et al., 2012). Elevatioradaas then assigned to the flexible mesh by spaimiaging. For the 1-
D channel network and bathymetry, global river Wwidata (Yamazaki et al., 2014) was employed whiak eombined with
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the equations from Paiva et al. (2011) to derivéhyraetry information. For further information, wefer to the relevant
papers.

To obtain a LPF schematization equivalent to thé/IDfehematization, elevation data as well as batbrnvidth and river
depth information were processed to agree withrélggirements of LFP. For river channel propertie,depth and width
information stored in the vector data used for Digre rasterized, and for the elevation data theogimed canopy-free
elevation data was upscaled to a 2 km spatial ugsalwhich equals the finest spatial resolutiorthef DFM schematization
(Figure 4). From Figure 4 it is visible that LFPntains a greater level of detail in areas farthestream due to the finer
spatial resolution uniformly applied. As a consetpe the total number of cells in LFP exceeds tiabrer of 2-D cells in
DFM by a factor 4 (Table 2). Furthermore, only ardul0 per cent of the entire schematization reptesk-D channels in
LFP, while the channel network of DFM was basedaoound 30 per cent of all DFM cells. For both DFKdaLFP,
Manning’s surface roughness coefficient was unifgraet to 0.03 s i for channel and floodplains which is consistent
with other case studies in the Amazon (Paiva et8all3; Rudorff et al., 2014a, 2014b; Trigg et 2009; Yamazaki et al.,
2011).

For the hydrological model PCR-GLOBWB, the kineroatiave approach was used for routing outside ofcthepled
domain. This is required as the hydrodynamic schieatéoons do not cover the entire extent of the AamaRiver basin.
Since simulated discharge from PCR for the Amazolpstntially under-predicts observations, we detitte apply a
regionalized optimization technique facilitatingngparison between simulated and measured dischaige {Hoch et al.
(2017)). In analogy to the hydrodynamic models,stiace roughness coefficient of PCR was uniforselyto 0.03 s i,
Model output of both set-ups was validated agaihserved GRDC-discharge at Obidos, the most doearstistation of the
GRDC-network in the Amazon River basin (Figure B).that end, Pearson’s r, the relative mean sogsaioe RMSE, and
the Kling-Gupta Efficiency KGE (Gupta et al., 2008¢re computed. The model time covers the periochf91/1984 until
12/1990 with the first year being used for spinefiphe coupled setting. This period had to be chakee to the limitation of
available GRDC data for model validation. As withe tsynthetic test case, run times were comparedbélable to
understand water level dynamics as simulated bl buidels, we compared them at three locations ¢vout the basin
(Figure 4). The locations were chosen such that tbpresent the upstream (Locl), midstream (LoaB)f downstream
dynamics in the basin (Loc3). Besides, inundatixterg was benchmarked by applying three evaludtiantions, using the
LFP inundation results as the benchmark dataset, Eie hit rate H was computed based on the gules¢ equation:

NDFM n NLFP
NLFP
Nirp andNpgy indicate thereby the number of inundated cellsR® and DFM at the same moment in time, respegtivied

H= (6)

perform consistent benchmarking, the flexible cefl®FM were resembled to the resolution of LFPe it rate can vary
between 0, signalling that DFM and LFP have no @ated cells in common and 1, indicating that allsce LFP are also
inundated by DFM.

In addition we determined the false alarm rati@ flso take into account false positive alarms. fakee alarm ratio can be

obtained with

F = NDFM \NLFP (7)
Npew N Nigp + Nopgy, \ Niep

In the optimal situation, F would be 0 showing thatcells are incorrectly marked as flooded in Defigreas a value of 1

indicates that all cells are classified as falseras.

10
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Last, we assessed the critical success index Chwdumbines both hit rate and false alarm ratio orie parameter which
can vary between 0 in the worst and 1 in the bestario, indicating perfect match between both dation maps:

C = NDFM n NLFP (8)
NDFM D NLFP
For both set-ups, the River-Floodplain-Scheme wetsvated and flux-updating was opted for. All simtibns were

performed on a Linux environment with an Intel i799 core at 3.90 GHz and 16 GB memory.

5.2 Results and Discussion

Benchmarking discharge results against observdtiom GRDC at Obidos shows that both models behaweélasly.
However, LFP tends to compute earlier peak flonwadl as earlier and lower low flow (Figure 5). Ascansequence,
obtained coefficients of correlation are lower k&P, while the model’s skill as expressed by KGE lkigher for LFP and
the RMSEs are comparable (Table 3). Even thouglligeepancies in simulated discharge betweenvtbarodels are not
remarkable, they require further investigation &gyt cannot be exhaustively explained with our arrprocess
understanding. Based on the results obtained isyhthetic test case and since the hydrologicairigrof both models is
equal in terms of water volumes, spatial distribotiand timing, we decided to evaluate the impdcthe following
parameters: the actual river length and dimensidrAP compared to DFM and the sensitivity of LFRVtanning’s surface
roughness coefficient over large areas.

Since the routing scheme of LFP is based on a B#&sywhere water can flow in southerly, northeglgsterly or westerly
direction, channel length and dimension in LPF temtde longer than in other hydrodynamic model$ &éne not based on
such a system, for example DFM. Reducing the gstlmeandering coefficient in LFP to scale riveigtan however, did
not show any significant impact on simulated disgba After investigating how changes in surfacegtmess values may
affect discharge estimates from LFP, we indeeddadifferent responses to variations in surface hoegs than DFM. Yet,
we know from the synthetic example that both modals produce similar results when using the sargoin coefficient
and since the flow regime in the Amazon basin cardéscribed as sub-critical, different sensitivaysurface roughness
over large areas can be disregarded as causesfiradge discrepancies. For the remaining gap iolated discharge, we
can at this point only make assumptions about these. Possible reasons include differences innakgrocessing of 1-D
channel bathymetry, channel-floodplain interactiand input elevation assignment due to the diffegeidding approaches
applied.

Assessing differences in simulated water level dyina at the observation locations, we cannot fing particularly
prevailing difference between the models’ respdnsieydrological forcing (Figure 6). In general wisserve that modelled
water levels are comparable, yet with locally difig patterns. While at the most upstream station3LDFM simulates
lower water levels than LFP, this is opposite a thost downstream station Locl, and at Loc2 botlletsoprovide
comparable results. Besides differences in actadéémievels, both models show a comparable responsedel input, yet
LFP tends to yield earlier peak water levels th&MDwhich concurs with the discharge dynamics obkeeles The reason
for differences in simulated water levels as waslltlaeir dynamics could not be fully attributed toeospecific cause. For
example, the more pronounced difference in wategléeat Locl may simply be a local effect and mayrddated to slight
differences in model schematization at the dowastreoundary or to backwater effects in the delggores affecting results
differently. Furthermore, discrepancies are likelyoe related to differences in surface elevationukated at the observation
stations due to the differences in gridding betwB&M and LFP. Assessing the local properties ofabgervation stations

revealed that the surface elevation in DFM is highan in LFP, and due to the flexible meshing| sizle can vary greatly

11
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too (Figure 4). Differences in cell size and therefgridding may thus also have locally impactesidlierall water levels as
well.

Regarding the run times of the two coupled set-wys,find that it takes LFP around six hours to dateithe entire
simulation period of seven years, that is modektpfus spin-up, while performing the same simutatiath DFM takes
around seven hours (Table 3). The difference intimes is less pronounced than for the synthesit ¢ase, which can be
related to the lower number of cells in DFM complate LFP due to use of a flexible mesh. In additianmore
computationally expensive interaction between 1Ad @-D domain in DFM could also affect run times BFM is in
general a multi-purpose tool whose applicationads Imited to inundation modelling, it is not unesgied that it may be
slightly slower than programmes specifically ta@idifor efficient large-scale inundation modellings as LFP.

We find that inundation extents obtained at the ehthe simulation runs with DFM and LFP are congide, yet far from
identical (Figure 7). Due to the larger inundatextent of DFM, a hit rate of 0.85 is obtained, @ating that 85 % of extent
as simulated by LFP is also simulated by DFM. Eglgadifferences in inundated extent in upstreamea and along small
reaches can explain the obtained false alarm o&io50 (

Table 5). These differences are also responsibléhéocritical success index of 0.46 corroboratimagt in bit less than half
of the cells inundation extent is simulated by bwitdels. A model agreement of 46 % is slightly kigthan the 30%-40%
found by Trigg et al. (2016) for a benchmarkingdstof global flood hazard models. This in fact seistg that the choice of
numerical scheme and model schematization alongreaily impact upon inundation, confirming th&fetiences in model
forcing and boundary conditions do not act alona aause of modelled inundation difference, whiobld have been the
case in the results obtained by Trigg et al. (2016)

A main cause for the differences observed for mgforther upstream is that DFM tends to computgelaflood extent than
LFP: with DFM having larger cells in upstream areag to the flexible meshing, a larger 2-D aremssantly marked as
inundated for DFM once overbank flow occurs. Thissl of level of detail in DFM is the concessionb® made for a
reduced number of grid cells and hence faster cteatipus in the 2-D domain. For more downstreamaegi differences in
inundation extent are primarily present at smatrichannels while floodplain inundation is comi@eaThis, however, can
to some extent be attributed to differences in ftioev1-D domain is implemented in the models, wiffiMDusing grid-size
independent vectors and LFP using grids at theafivepatial resolution of the schematization. Gitkea overall larger
inundation extent simulated by DFM, the above-dised deviations in simulated discharge and in quaati the more
pronounced wave attenuation in DFM may be explaaseceturn flows from the floodplain to the chansetm to be faster
in LFP than in DFM.

6 Conclusion and recommendations

In this study, we presented GLOFRIM, a GLObally laggble computational FRamework for Integrated lnjagical-

hydrodynamic Modelling. In its current version, provides an environment to one-directionally couge global
hydrological model PCR-GLOBWB (PCR) with two hydyoméimic models: Delft3D Flexible Mesh (DFM) solvittge full

shallow-water equations, and LISLFOOD-FP (LFP) Bgvthe local inertia equations. By linking hydrglo to

hydrodynamics, it is possible to take advantagehef strengths of both while at the same time corsgiamy their
weaknesses.

We define five main assets of GLOFRIM: (i) it isespy accessible and hence can be directly appdiddpted to specific
purposes, and extended with other models; (ii) mpleying a global hydrological model to obtain mbdtercing, the

framework can easily be applied globally; (iii) deds to be coupled may be selected depending anldical performance

12
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and thus more relevant processes can be captuwdhé spatially explicit coupling scheme can beeaded to a full
feedback-loop between hydrology and hydrodynamifg; thorough benchmarking and ensemble modelling of
hydrodynamic models is supported by providing idehthydrological forcing for experiments.
GLOFRIM at present provides a range of possibléoaptfor model coupling. Users can choose betweempling PCR to

5 either the 1-D or 2-D domain, can specify whetherupdate hydrodynamics through states or fluxes, @m run
hydrodynamic models in both spherical and projecteatdinate systems. It is generically written doés not require any a
priori knowledge of the code as all important sefsi are specified in a separate settings-file.
Besides PCR as well as DFM and LFP, there are d&eauof other global hydrological and hydrodynamicd®ls available
which have their individual advantages. As the feamork is freely and openly available, its design easily be extended

10 and adapted to cater the coupling of other hydioc&@r hydrodynamic models, merely requiring ttrplementation of the
BMI into each model to be added. The BMI does rwtnge the model functionality while at the sameetipnoviding a
range of added functions. Furthermore, not all rheddables need to be exposed, only those to tem® model geometry,
distinguish between 1-D and 2-D cells, and a véeiab be updated. We therefore recommend consigi¢his option for
future model developments and will also aim to mpowate other models ourselves. To our knowledpatialy explicit

15 model coupling at global scale by means of sudaméwork is unprecedented. Consequently, user iexpes and lessons
learnt are still sparse and any initiatives regagdramework extension are therefore kindly recgig the authors, as well
as feedback and experiences made. We also recomtihertdsting and application of it in other studgas and under
different boundary conditions to further evaludte tode, process flow, and applicability.

Before applying GLOFRIM in an actual test case ,pggformed a simple synthetic test case to obtdirsiorder insight in

20 how both models may differ regarding their comgotel complexity. Thereby both the 1-D and 2-D domaere forced
by a synthetic inflow signal and simulated disclearmgas evaluated along the flow path. Results shaw hoth models
produce the same response to the signal despitdiffeeence in solver complexity. The results ob&al are in line with
previous studies showing that for sub-critical flozgimes discharge results should be similar (DmeMia and Bates, 2013;
Neal et al., 2012a).

25 Both hydrodynamic models were then applied withitOFRIM and evaluated regarding simulated dischangeer levels,
run time, and inundation extent, also constitutengfirst comparison of large-scale flexible mesh aedular grid
applications. Assessing simulated discharge fortélsé case in the Amazon River basin shows thdt baidels exhibit
comparable results with LFP tending to computeieraaind slightly increased peak discharge estimateshorough testing
of possible causes did not show significant improgets, we speculate that differences in processfn@-D channel

30 bathymetry, interaction between 1-D channels am flsodplains or assignment of surface elevatiotada the different
grids may impact discharge results. A more in-degihlysis of these differences was however outsidescope of this
study and thus needs to be performed in a follovetuply. As the general overprediction of observisgtwrge at Obidos
can partly be attributed to the absence of hydiotdgorocesses on inundated floodplains, it is sexyed to extend the
current code such that it also caters for a fudtifeack loop between hydrodynamics and hydrology.

35 Water levels simulated by both models differ logailet only slightly. These discrepancies betweeth models are most
likely due different grid schematizations in DFMdabFP, which results in locally differing elevatimalues and cell areas
and thus influences simulated water levels. Dudifferences in model structure, downstream boundangditions had to be
implemented slightly differently, possibly also iegting water level results in particular for moaghstream stations. As it
was the aim of this paper to introduce the comprat framework applied, a more elaborated evadmatf causes for

40 water level deviations is future work.
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A key parameter for large-scale modelling is runeti In the current study, the schematization of kBRtains more than
four times the number of 2-D cells than DFM white humber of 1-D cells is 40 per cent higher in [a88Rn DFM. Despite
the greater number of cells, LFP has a slightlytelnaun time. This is in line with the results aisied in the synthetic test
case, yet the relative difference is reduced dubeapplication of flexible meshes for the 2-D @mand the nature of the
coupling algorithm applied: because water was cidirectly into the 1-D channels, flow over th®2lomain was limited
and, as a result, so was the impact of differemce®mputational efficiency of the models. Diffecess in run times may
also be related to more fundamental factors, sscth@ degree of code optimization applied. Addaibn DFM was, in
contrast to LFP, not explicitly developed for eiffist inundation modelling, but as a multi-purposel including a number
of additional physical processes, such as the fiatan simulate 3-D flow, estuarine processes yarbgeomorphologic
dynamics, which could also result in longer runeimTo better understand causes of run time diaonoigs, further model
development, testing, and evaluation is therefecemmended.

To benchmark LFP and DFM in terms of simulated dation extent in the Amazon River basin, the hig fd, the false
alarm ratio F, and the critical success index Ceveiatermined. In general, both models agree alsooften as they disagree
C=0.46 indicating that both DFM and LFP predict siaion extent for around half of all cells. Thevél of agreement is
slightly higher than the one obtained by Trigglet(2016) and is a strong indication that the mia#g®metry and numerical
scheme play a similarly strong role in influencimgdel accuracy as the boundary conditions and nfodehg applied in
global flood hazard models. Moreover, a higher atwuld not be obtained due to the impact of tlesilfle mesh,
especially for upstream areas where DFM runs ds ¢bhat are a factor 25 larger than in LFP. Whilets large cells
contribute strongly to shorter run times, they naégo have implications for detailed flood hazartinestes which can be
strongly hampered. In case of employing a flexilesh it seems as if an a priori decision has tonhde where and to
which extent such models are supposed to provigedcale results or whether computational effigieiscthe main aim —
both at the same time does not seem to be fedsilsleour results. We hence recommend testing tipdicgtion of flexible
meshes for riverine inundation modelling in moréaddo obtain a better understanding of the traffde be made between
grid refinement and related run time. Besides,hirtbenchmarking of the impact of flexible meshasnmdel accuracy
with respect to regular grids is recommended.

With the presented computational framework GLOFRIMI the satisfactory results obtained, we trustaiee contributed
to the current development of model coupling artidgration, and to have provided an openly accessitl that facilitates
more accurate large-scale flood hazard estimates. Wpe that, eventually, the integration of hydgatal and
hydrodynamic models will lead to improved floodkrigssessments and planning of climate change impgicfation and

adaption measures.

Code and/or data availability. The code of GLOFRIM as well as the BMI-versiond 6FLOOD-FP and PCR-GLOBWB
are openly accessible and freely downloadable iadrd$10.5281/zenodo.597107
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Figure 1: Flow diagram of steps executed in comput®nal framework; all steps in italic are taken byusing the Basic Model
Interface (BMI)
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Table 1: Run times of different set-ups in syntheti test case
2-D 1-D
DFM 19.5 min 5.5 min
LFP 2.1 min 2.6 min

5 Table 2: Overview of key properties of hydrodynamicschematizations coupled to PCR-GLOBWRB in this stug

2-D cells 1-D cells Smallest cell size Largest ksikze
DFM 41,207 12,185 2 x2km 10 x 10 km
LFP 174,982 17,119 2 x2km 2x2km
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Table 3: Results of Pearson’s coefficient r, root ean square error RMSE, and Kling-Gupta-Efficiency KGE obtained to
benchmark discharge as well as run times of coupledins

r RMSE KGE Run time
DFM 0.92 25,289 rh 0.76 7h
LFP 0.89 22,291 h 0.82 6h
5
Table 4: Local properties of water level observatip stations; input elevation refers to values obtaied after hydraulic conditioning
of canopy-free SRTM elevation data at 15 arcsec sfal resolution
Locl Loc2 Loc3
Input elevation 4.0 7.0 44.5
Model elevation LFP -0.2 2.4 37.4
Model elevation DFM 0.5 4.9 42.5
Cell area LFP ~4x 10
Cell area DFM 7,7x10 7,7x10 30,9 x 16
Table 5: Resulting benchmarking indicators for inurdation extent
H F C
LFP / DFM 0.85 0.50 0.46
10
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